The global market of stem cell research and therapies, ‘stem cell tourism’, and models of innovation – Western and non-Western models

The ‘hype and hope’ of stem cell research and treatments has contributed to the expansion of a flourishing ‘illicit’ global market for stem cell therapies. Patients from all over the world are travelling to places like China, Russia, Japan and India to be treated with - mostly experimental - stem cell therapies. This phenomenon has been coined ‘stem cell tourism’.  

Western models

In the West, a combination of a gap between ‘what was promised’ and ‘what is being delivered’, and the slow pace of traditional Western models of scientific innovations has further stimulated a global supply of ‘illicit’ therapies. The conventional science-based model of innovation (Figure 1) is the considered the most ‘sound’ and ‘safe’ approach, but is also the slowest.  

Indeed, “given the high demand for stem cell therapies, the clear market disadvantage of this model is the time and cost of product development. As with general drug development, including preclinical and clinical safety and efficacy testing, therapies can typically take 12–15 years and approximately EU€1 billion to develop – a difficult business model to sustain” (Salter et al., 2014, p. 355). This has pushed some Western countries to allow for fast-tracked clinical trials (Figure 2) in cases where patients have no alternative treatment. In those cases the authority lies with the clinician.

Model II fast-tracks the clinical development and applications of therapies without upsetting or compromising basic research (i.e. ‘lab’ research) and product development. Model II is a model of ‘medical innovation’, as distinct from ‘scientific innovation’, where generalisable results are the end goal.

Largely in response, non-Western countries have modelled their medical innovation differently, in ways that allow therapies (and stem cell treatments) to reach patients and the market, faster than in the West.

Non-Western models

Non-Western models remain very attractive for those patients who are not eligible for stem cell treatments at home (cf. Model II). These other models of medical innovation (Model III and IV) do little clinical experimentation and have the benefit of going straight from product development to clinical trials.

“Model IV combines elements of medical innovation and scientific innovation in a single business model. Here, some of the profits from stem cell medical innovation are re-invested in the funding of the registered clinical trials” dealing with safety and efficacy required for stem cell scientific innovation, but with regard to different diseases to those addressed by the treatment available through the medical innovation activity” (Salter et al., 2014, p. 357)

There is an irony though: whilst “the vast majority of the stem cell therapy market activity is in the domain of medical innovation (Models II, III and IV), the vast majority of the official policy discourse and public commentary focuses on the domain of scientific innovation (Model I)” (Salter et al., 2014, p. 358). The UK Stem Cell Bank, the International Stem Cell Forum and the International Society for Stem Cell Research (ISSCR), and national funding research agencies, amongst others, have been providing guidance on ‘good practices’ for stem cell basic and applied research, but very little on clinical applications.

This entails that the strong demand and the ever-growing supply in the global market of stem cell therapies is constantly being ignored by policymakers and regulators who continue to support and promulgate the traditional model (cf. Model I) of scientific innovation. There is certainly a case for claiming that the conventional science-based model of innovation is increasingly ill-suited and unsustainable in increasingly global, competitive biomarkets, as is the case for stem cell therapies. 

To read about the models of innovation, click here.